The Navy Department of Defense Supercomputing Resource Center (DSRC) is pleased to announce that it will receive the largest, most capable supercomputing system procured to date in the Department of Defense (DoD) High Performance Computing Modernization Program (HPCMP).
At a peak theoretical computing capability of 12.8 petaflops, or 12.8 quadrillion floating point operations per second, the multi-million dollar Cray Shasta supercomputer will be the first high-performance computing system in the HPCMP to provide over ten petaflops of computing power to Department of Defense scientists, researchers, and engineers. It will be housed and operated at the Navy DSRC at Stennis Space Center in southern Mississippi.
That projected computing capability of the new system puts it in good company: today, it would be ranked among the top 25 most capable supercomputers in the world when compared to the current list at Top500.org, which ranks the world’s most powerful non-distributed computer systems.
“The investment and increase in supercomputing power at the Navy DSRC at Stennis Space Center is absolutely critical to Naval Oceanography delivering future capability upgrades to global and regional ocean and atmospheric prediction systems, to include later this year the Navy’s first Earth Systems Prediction Capability,” said Commander, Navy Meteorology and Oceanography Command (NMOC) Rear Adm. John Okon.
“Naval Oceanography’s ability to be the Department of Defense’s authoritative source for characterizing and applying data of the physical battlespace into a decisive advantage for naval, joint and allied forces hinges on the continual upgrade and advancements in high-performance computing from the High Performance Computing Modernization Program.”
The Cray Shasta supercomputer will feature ores and 112 NVIDIA Volta V100 General-Purpose Graphics Processing Units (GPGPUs), interconnected by a 200 gigabit per second Cray Slingshot network. The system will also feature 590 total terabytes (TB) of memory and 14 petabytes (PB) of usable storage, including 1 PB of NVMe-based solid state storage.
Source: HPC Wire